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A Method of Calculating the Characteristic Impedance
of a Strip Transmission Line to a Given

Degtee of

RUDOLF G.

Summary—The calculation of the characteristic impedance of
the strip transmission line TEM-mode can be reduced to the solution
of a two-dimensional potential equation with the strip cross section
determining the boundary conditions.

Usuaily this potential equation is solved by conformal mapping,
but only the most simple shapes permit exact mapping. Approxima-
tions may require considerable work and their accuracy is uncertain.

This paper describes an alternative numerical method which is
particularly suitable for boundaries consisting of any number of
straight lines and right angles.

It is based on relaxation methods, but by using also variational
principles it derives an approximate value for the impedance, and
an upper and lower bound with a difference as small as desirable.

come increasingly popular for use in transmission

lines, filters, mixers, and other components in the
kilomegacycle range. For all these applications, values of
the characteristic impedance Z of the strip are required,
but are often difficult to obtain with good accuracy.

It is the purpose of this paper to describe a new meth-
od of numerical calculation which is accurate and simple
to use for any strip cross section.

The strip, having a conductor insulated from ground,
supports a TEM wave if the medium is homogeneous.
The calculation of a TEM field reduces to that of a 2-
dimensional Laplace equation with boundaries given
by the strip cross section, and the propagation constant
depends only upon the medium.™2

Based on this, the characteristic impedance Z is
expressed by:

I[ N the last few years, strip transmission line has be-
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for the given boundary condition.
The integration extends along the “hot” conductor.

C may be identified with the capacity of the strip
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per unit length; but it might also be used to solve re-
lated problems in which the potential equation defines
other physical quantities, like magnetic flux, fluid flow,
or heat flux.

In order to obtain C, approximation methods, based
on estimates for the “fringe” capacity were first intro-
duced.?? Later a number of workers used conformal
mapping,*** but only few cases, usually assuming in-
finitely thin conductors, can be calculated in closed
form; even they lead to rather complicated expressions
in elliptic functions. Otherwise approximations must be
made to obtain usable results.

We note that the main effort of the conformal method
is directed toward solving the Laplace equation point
by point, or in other words, to describe the electro-
magnetic field in every point of the cross section. This
field is usually of no interest by itself, but a close ap-
proximation of the field seems necessary to obtain a
close value for C.

Variational methods' are known to be numerically
useful {or just such a type of problem and very recently
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they have been applied to certain TEM structures, as
for instance trough lines.”~® They permit a good esti-
mate even if a relatively crude trial function is sub-
stituted into a “stationary integral.” However, varia-
tional methods have two disadvantages. Good trial
functions must permit easy numerical work, they should
contain a large number of parameters which can be
chosen arbitrarily, and they should cover a fairly gen-
eral case. Such functions are not always easily found.
Also, the calculated approximation is actually an upper
bound for the stationary integral, but little advantage
is obtained from this fact as long as no lower bound is
known.

In this paper itis intended to derive two stationary in-
tegrals, which give both an upper and a lower bound for
the characteristic impedance Z. Both integrals permit
relatively easy numerical evaluation when trial func-
tions obtained by a process similar to relaxation are
used.

We shall consider the region R of the complex plane
which is bounded by curves G and H, corresponding to
the cross sections of ground plate and “hot” conductor,
and by the two sides of cuts F; which are introduced with
the purpose of making the region R of the complex
plane simply connected. This is illustrated in Fig. 1.
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Fig. 1—Strip cross section, showing construction of
the simply connected region R,

In this region R we shall define a potential function ¢
and a stream function ¥ as follows:
The potential function ¢ is defined by:

¢=00nG (3a)

¢=1on H (3b)

¢ and 5? are continuous across the cuts F (3¢c)
n

A¢ = 0in R. @

Because of (3a)—(3c) the expression ¢(d¢/dn) will be
equal to the integrand on H, disappear on G, and cancel
on both sides of F. Consequently, we may express C by
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The subscript F, G, H, indicates that the integration
extends along the whole contour of the simply con-
nected region R. On (5) we may apply the Gauss Theo-
rem, and using (4) we obtain

= [ o (©)

with the notation

99\* A
o= () +(5)
ox Jdy
(because this is a two-dimensional problem) and:

dA = dxdy.

The stream function ¢ is defined as the conjugate func-
tion to (¢/C)p, or in other words by the Cauchy-
Riemann equations:

] C a

_?Z___‘f (7a)
dx e Jy

9 C a

% _ _Cw (7b)
dy e dx

from which it follows immediately that ¢ too is a solu-
tion of the Laplace equation:

Ay =0 (8)
and
(C/a*(V)? = (Vg)* 9

¥ is uniquely determined except for an additive con-
stant, which may be chosen arbitrarily.
The boundary conditions for ¢ follow from those for

?, (33)-(3C)

a
on G and H: —¢ =0 (10a)
n
g
on F;: 5‘6 continuous. (10b)
n

Across F; the function ¢ will be discontinuous. (The
cuts F; have been introduced for this purpose: other-
wise ¢ could not be uniquely defined.) However, the
“jump” of ¥ will have a constant value along the cut
F;. We shall denote this constant by writing F; as index

to the functiony:
along F;: ¥/12 = Yr, = constant. {10c)

We consider now only those cuts Fj which lead from
G to H. For these cuts we shall calculate the expression
> Yr, as follows: If we integrate along a closed curve

around H:
[¢]
f —{/ds
" 0s
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this integral does not disappear, because of the dis-
continuities ¢¥r,. However,

f g%dwr > ¥r, = 0. (11)
Substituting from (7) and (2) we see
C o ¢
T as om
> Y, = —f %fm: - _1/6 ; gzds =1. (12)

(Provided that consistent sign conventions are used,
e.g., counterclock integration, crossing 7 from 1 to 2,
normal direction pointing outside from conductor.)
Usually there will be only one hot conductor, and one
cut F, and the sum D _¥r,=1 will have only one term.
However, (13) will be derived to cover also the case of
several conductors, which of course may be used to
support a number of TEM modes. Some such struc-
tures have been recently described.!8720

Finally we express C/e by ¢, substituting (9) into (6):

C 1

< ffR(V¢)2dA

While (13) as well as (6) seems to be unnecessarily
more complicated than (2) we note as previously shown*
that both area integrals are stationary. Consequently,
even crude approximations of ¢ and ¥ will give close
upper bounds for the area integrals, and with it upper
and lower bounds for Z. The approximations have to
fulill the same boundary conditions as ¢ and ¢ and
they must be continuous; they need not be solutions of
the Laplace equations. We may formulate:

(13)

a) If a function U is continuous and if it takes the
values U =1 along the hot conductor(s) and U=0
along ground, then U may be used as trial function
to calculate an upper bound for C by

%gff(VU)QdA.

The equal sign holds only if AU=0.

b) If a function Vis continuous in a simply connected
region R, which is obtained by arbitrary cuts F;
from the part of the complex plane which is
bounded by the conductor and ground plate cross
section, and if the jump in V across any cut Fj is,
for this particular cut, a constant Vg, and if the
sum

(14)

19 S B. Cohn, “Shielded coupled-strip-transimission line,” IRE
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1956.
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(the summation extending over all cuts leading
from ground to a hot conductor), then ¥V may be

used as trial function to calculate a lower bound
for C by

C 1
=

ffR (VN4 |

The equal sign holds only if AV =0.

Physically the integrals (6) and (13) are twice the
electrostatic energy (3CU?) for unit potential drop, and
twice the electromagnetic energy (3LI?) for unit current
in the conductor(s); both are expressed by the energy
density of the respective fields. The stationary char-
acter of the integrals may be explained by noting that
any approximation of the field introduces additional
space charges or currents which can only increase the
total energy.

The lower bound is then obtained from L by elimi-

nating Z from
e L
7= Ve _ /‘/_ . 0
C C

However, because of the importance of the relations
(14) and (15) they will be derived separately in Ap-
pendix IT; this will also give a better understanding of
the restrictions in the choice of U and V.

The bounds obtained by the integrals are remarkably
close if we construct suitable trial functions. This will
be done now for U; the construction of V is completely
analogous. As (14) and (15) can be used to check the
accuracy of the result, we may feel free to choose the
trial functions not so much for close approximation of
the field but for numerical convenience:

(15)

a) We chose a Cartesian grid of square mesh with
NN meshes of side length 2 which is conveniently
located with regard to boundaries and symmetry
lines.

b) Within each square & of the grid, we define a differ-
ent trial function Uy(x, ) as the bilinear expres-
sion:

Ui(x, y) = Bri-2y + Bro-% + Brs-y + Bra.

Uy is a potential function with four available
parameters By, which shall be chosen in such a
way that U interpolates linearly between the (ar-
bitrarily chosen) wvalues of U at the grid cor-
ners, which we shall name “grid values.” Then the
functions Uy will join continuously across the grid
lines.

¢) The function U, which is constructed to be equal
to each Uy in its square, is then a continuous func-
tion and suitable as trial function.
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This trial function contains the arbitrarily chosen grid
values as independent parameters which shall be chosen
later so that a minimum condition will be fulfilled.
Therefore, it 1s logical to express by these grid values the
contribution of the kth square to the stationary integral.
Substituting gives at first an expression in By;

ff (VU)2dA = Zf (VU)dady
B k=1 Ry

ffﬂ (VU)dxdy

+h]2 +R/2

= f [(Biry + Bio)® + (Birx + Bis)?|dyde
~h!2 —h/2 .

2
/zz[fb B’
6

+ Bt B | (16)
but we wanted to express the integrals in terms of the
grid values U, elc.

After further substituting and rearranging, the final
equation may be written in two forms:

f f (VU)d A

Z[%(Ul— Us+ Uy — Uy + 3(Uy —

S (UL = U)? 4 (Us — U2+ (Us —

Eq. (17} is useful {for numerical evaluation as shown in
Appendix I. However, (18} is helpful in understanding
the additional restrictions we can impose on the grid
values so that the integral becomes a minimum.

It is of course desirable to use such grid values that
the integral (14) has the lowest possible value. As this
integral in any case must be larger than C, the lowest
integral gives also the lowest error. In (18) the terms in
the brackets contain twice the squares of the changes
of U along the diagonals, but only once the square of
the change along the side of the mesh. However, the
same amount again is contributed bv the side of the
next mesh square, as shown in Fig. 2.

Consequently each grid value Uw contributes with
equal weight the squares of the eight differences be-
tween U, and its eight neighboring grid values, to the
quadratic terms of the sum (18). The minimum of these
8 terms is obtained when the grid value Uy is the arith-
metic mean of its 8 surrounding grid values. This gives
one linear equation. Similar equations are desirable for
all other grid values. This results in a system of linear
equations which has only the one solution correspond-
ing to the lowest value which the upper bound for C
can take if any function defined for the given grid is
used as trial function.

If the number of grid values is large, these equations
may be solved by the relaxation methods introduced
and described in detail bv Southwell and his cowork-
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Fig. 2—Each value Uy is the average of eight surrounding values.

ers?!—? except that conventional relaxation is based on
the average of only four neighboring values and is of
little known accuracy. Also, because our integrals can-
cel the first-order error, the relaxation must be carried
out only to one or two digits accuracy for our case, so
that there is less numerical work than in a conventional
relaxation.

CONCLUSION

In conclusion we may describe the numerical method
as follows:

1) Make a low accuracy relaxation plot for unity po-
tential drop.

Uy + H(Us — Us)?] (17)

U4 (Us— U+ 2(Uy — U4 2(Us — Ug?]. (18)

2) Repeat the plot, but for unity potential discon-
tinuity.

3) Square the differences (U;— U+ U;—U,), etc.,
and summate for both plots according to (17).
The normalized impedance must then lie between
the inverse of the sum of the first plot and the sum
of the second plot.

ArreNDIX I
ExaMPLE

Suppose we have the symmetrical strip of the cross
section, Fig. 3, and we want its impedance for the odd
mode. Because of conventional symmetry considera-
tions and the availability of a solution for one strip (due
to Bates?) shown in Fig. 4, we have to solve numerically
only for twice the piece of cross section which is shown
enlarged in Fig. 5, covered by a grid of ten meshes and
bounded by equipotential and symmetry lines. The
field and the characteristic impedance for the cross
section, as shown in Figs. 5-7, will be evaluated numeri-
cally. This is intended as an example, illustrating the

28 D, R. Hartree, “Numerical Analysis,” Clarendon Press, Oxtord,
Eng., ch. 10; 1952.

22 R, V. Southwell, “Relaxation Methods in Theoretical Physics,”
Oxford University Press, Oxford, Eng.; 1946.

2z E, M. Grad, “Solution of electrical engineering problems by
Southwell’s relaxation method,” Trans. 4IEE, vol. 71, pt. 1, pp.
205-214; July, 1952,
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Fig. 3—Double conductor strip.
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Fig. 4—Strip solved by Bates.t

numerical work required. Fig. 6 shows a very rough
approximation of the potential at the corners of the
grid, which we call “grid values.” Each “grid value” is
obtained from the condition that it must be approxi-
mately the average of its eight neighboring grid values;
approximately means accurate within one or two digits.
With some practice the grid values may be just written
down without further calculation.

Fig. 7 shows a similar plot, except that equipotential
and symmetry lines are interchanged. Decimal points
are omitted in both plots. Their proper location is given
by the requirement that Fig. 6 shows a field with unity
potential drop, and Fig. 7, a field with unity sum of
potential discontinuities. For each mesh, we calculate
the following expressions in its 4 grid values U:

(U1 = Us+ Us — U2, (U — Uy)?, (Up— Uy)?

and add these terms for all N mesh squares, according
to (17) as tabulated and evaluated in Table I.

As our approximation is still very crude, we consider
it to fit a similar plot evaluating the left half of Fig. 4.
This plot need not be worked out because we obtain its
results from the Bates solution* which, in this particular
case, gives Zg=>51.5 ohms. The (with 377 ohm) normal-
ized values for the impedance and admittance of the
left half may be added to the values of our plot as if
we had obtained them by continuing our plot into the
Bates region.

The results of the numerical calculation are two
values, one larger than 377/Z, the other larger than
Z/377 (the normalized impedance of the strip). This
can be rewritten as Z=48.6 ohms with an accuracy just
shown to be better than +2 per cent. A more refined
plot with 40 meshes and 2 digit accuracy has been
worked out and gave Z =48.5 ohms 0.8 per cent. This
illustrates that it is not difficult to get good results.

ArrENDIX II

For proof of (14) write U as sum of the correct solu-
tion ¢ and an error ¢/,
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Fig. 6—Relaxation solution for the “grid values” of Fig. 5. Each
grid value is approsimately the average of the eight neighboring
grid values.
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Fig. 7—Relaxation solution for the grid values of Fig. 5 after
interchanging equipotential and symmetry lines.

U=2¢+¢.
The boundary conditions {or the error ¢ are:
¢ =0on G
¢ =0 on H

?

¢’ and o continuous across F.
7

We note that the last condition is not very stringent,
as the location of the cuts F is arbitrary. Consequently,
o

¢ —ds =0

reeg On

and, using again Gauss’ theorem and (4) this becomes

ff V¢Ve'dd = 0

for any ¢’ which only {ulfills the boundary conditions
and is continuous and of limited variation so that the
Gauss theorem can be used. Expanding the expression
on the right side of (14), we get

fL(VU)%A
- ffR(V¢)2dA + 2ffRV¢v¢'dA+ffR(V¢’)2dA,
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TABLE 1
NUMERICAL EVALUATION OF Z
Mesh (U= Us+Us— U2 | (U1—Us)? | (Up—Up? | (V=TVot+Vs—=V)2 | (Vi—V3)2 | (Vo V)2 | Square terms of final equation
1 0 5 25 0 36 36
11 1 25 16 0 28 25
1T 4 16 4 1 9 16
18Y 4 4 0 0 0 4
\% 0 25 25 0 36 36
VI 1 36 25 16 25 81
VII 16 64 0 0 0 64
VI 4 16 4 0 9 25
iX 1 36 25 16 36 100
X 1 25 16 1 25 36
3)32 272 140 3)34 201 423 Sum up:—
11 11 RGBS N EBLE SN ENL
272 201
140 423
423 635
4.23 0.0635 - Restore decimal point
3.66 —Add known solution for re
377 0.0683— v Z maining half of field
—— > —— — ———
7.89 Z 0.1318 377 Nule=317TQ

The 2 inequalities give: Z=48.6 Q@ +2 per cent
A more refined plot with half the mesh size and 2 digit accuracy gives: Z=48.5 ©+0.8 per cent

— ds.

as

and substituting (6) gives ‘ kk ¢ b s = f ¢
[ F; n F

C
ffR (VU)d4 = —+ ffkw(ﬁ )*d4 (19) This integral can have only two values:

€

i

. . . . . = 0if F; boundaries of 1 potential
from which (14) follows immediately. Regarding ac- 1L 3 connects two boundaries of equal potential, or

curacy, (19) shows also how the error in C depends on = 1if F; connects from a G boundary to an H boundary
the error of the approximation U of the potential func-
tion ¢. Finally we may drop the requirements for
limited variation; otherwise the integrals would not
even be finite, much less a minimum.

For proof of (15) write V as sum of the correct solu-

Only the latter ones are crossed by the contour around
all H conductors; therefore only these terms contribute
to the sum, which we indicate by changing the index
from 7 to A:

tion ¥ and an error ¢’: NN N
i i § vZu-suf Ya

Vo=y+¢ ren  On i 7; On

~ _ 1 ¢ 1

2a Ve =1 = ¢,'f —ds = — > yp, = 0.

» C/e; o £y 08 C/ezh:' o
=0 20

; vr (20) If ¥’ is continuous and of limited variation we can

) apply the Gauss theorem and get
in which Vg, and ¢¥,” denote the jump of V and ¢’

across the cuts F, (which are crossed when circling all ff VYVdA = 0
H boundaries). R

W leul
e now have to caleulate for any function ¥’ which need only fulfill (20). From

f‘ v i J this follows
— ds.
FGH

on 1
ff (vV)dA = — -+ ff (WA
Because 0y /dn =0 on G and H (10a) this becomes: R Cle R

which gives us (15) immediately.

v
Y —ds

reg On

o
Zf ‘pFi,-” ds
: Jrp,  On

AprpenDIx 11
, Y This Appendix deals with the convergence of the
Z <”I’F i f an ds). bounds when evaluated by relaxation methods.
* For all practical purposes, it will be sufficient to cal-
Substitute from (7) culate the upper and lower bounds, which give directly

It
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the total possible errors and, if necessary, to go to
one finer plot. However, this can be repeated to any
given accuracy; in other words, it is sufficient to refine
the plot if the difference between the bound and the
correct value is to be made smaller than any given
value. This shall now be shown briefly.

The error in (19) consists of two parts: 1) Error due
to incomplete relaxation, 2) Inherent error due to size
of the grid.

The first error is essentially numerical and shall not
be of concern here. It is assumed that a sufficiently ac-
curate relaxation is available. For the second error,
however, we will assume that we know the exact solu-
tion ¢ and we will take arbitrarily the values of the
exact solution as grid values Uy etc., and get

Uy = ¢
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With (19) this error becomes

f f (Ve')2dA.

But on the grid corners ¢’ =0; and because ¢ is con-
tinuous and differentiable the integral, and with it the
error for this arbitrarily chosen plot, will disappear in
the limit if the grid is made sufficiently fine.

Of course the plot for which it was just proved that
its error can be made negligible is not the plot obtained
by relaxation. However, it is a pleasant feature of the
variational method as compared to conventional relaxa-
tion that this does not really matter because the error
due to the completely relaxed plot must be still smaller
than the error {from any other plot. This completes the
proof.

Ferrite Line Width Measurements in a
Cross-Guide Coupler”

DONALD C. STINSONTt

Summary—Theoretical and experimental results are presented
to show that the line width and the g factor of a spherical ferrite sam-
ple can be measured in a cross-guide coupler. The method is much
easier to instrument than the usual cavity method and the measure-
ments are much easier to perform. Experimental verification with a
cavity perturbation system indicates that the measured quantities
are sufficiently accurate for most purposes.

INTRODUCTION

ECENT work by the author with ferrite direc-
R tional couplers indicated that such devices! might
be useful in measuring the line width and the

g factor of ferrites. Earlier unpublished work by the
author in this field showed that such devices were not
practical for measuring the components of the suscepti-
bility tensor of a ferrite sphere because of the extreme
sensitivity that was required in the detecting system.
However, the measurement of the line width and the
g factor depends upon relative power measurements.
Thus, it was felt that the couplers offered considerable
promise of vielding accurate data with a minimum of
effort. A second method was also desirable in order to
verify data on line widths and g factors obtained with a
cavity-perturbation system. It was not intended that
the new method be highly accurate, but rather that

* Manuscript received by the PGMTT, May 27, 1958; revised
manuscript received, July 11, 1958.

T Lockheed Missile Systems Div., Sunnyvale, Calif.

D, C. Stinson, “Ferrite directional couplers with off-center
apertures,” IRE TraNns. oN MicrowavE THEORY anD TECHNIQUES,
vol. MTT-6, pp. 332-333; July, 1958,

it be simple and capable of yielding reliable comparative
data during the development of optimum manufactur-
ing techniques.

The method chosen is extremely simple and uses a
cross-guide directional coupler with a round, centered
hole in the common broad wall. The wall thickness at
the coupling aperture is about half the normal wave-
guide wall thickness and the hole is of such a diameter
that the coupling is 40-30 db. For the X-band test
coupler presently used, the hole diameter is % inch and
the wall thickness at the hole is 0.020 inch. The X-band
test coupler is illustrated in Fig. 1. The two waveguides
are soldered together and an access hole is provided for
inserting the sample into the coupling hole. The fit of the
cover plate on the access hole is not critical since any
leakage of power through it is unimportant in relative
power measurements of this type as long as the leakage
power remains constant while the measurements are
being taken. The ferrite sample is glued symmetrically in
the coupling hole with Duco Cement, which had no
noticeable effect on the measurements. However, the
placement of the sample in the coupling hole had some
effect on the level of the coupled power but no notice-
able effect on the line width or the g factor.

The usual method for measuring the microwave
susceptibility and the effective g factor of a ferrite de-
pends upon the complex frequency perturbation of a
resonant cavity. The method is quite popular but fairly
difficult to instrument. It also has other disadvantages:



