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A Method of Calculating the Characteristic Impedance
of a Strip Transmission Line to a Given

Degree of Accuracy”
RUDOLF G, DE lH.JDA~

Summary—The calculation of the characteristic impedance of
the strip transmission line TEM-mode can be reduced to the solution
of a two-dimensional potential equation with the strip cross section
determining the boundary conditions.

Usually this potential equation is solved by conformal mapping,

but only the most simple shapes permit exact mapping. Approxima-

tions may require considerable work and their accuracy is uncertain.

This paper describes an alternative numerical method which is

particularly suitable for boundaries consisting of any number of
straight lines and right angles.

It is based on relaxation methods, but by using also variational
principles it derives an approximate value for the impedance, and

an upper and lower bound with a difference as small as desirable.

I
N the last few years, strip transmission Iiue has be-

come increasingly popular for use in trausrnission

lines, filters, mixers, and other components in the

kilornegacycle range. l?or all these applications, values of

the characteristic impedance Z of the strip are required,

but are often difficult to obtain with good accuracy.

It is the purpose of this paper to describe a new meth-

od of numerical calculation which is accurate and simple

to use for any strip cross section.

The strip, having a conductor insulated from ground,

supports a TEM wave if the medium is homogeneous.

The calculation of a TEM field reduces to that of a 2-

dimensional Laplace equation with boundaries given

by the strip cross section, and the propagation constant

depends only upon the medium.l–z

Based on this, the characteristic impedance Z is

expressed by:

for the given boundar~ condition.

The integration extends along the “hot” conductor.

(1)

(2)

C may be identified with the capacity of the strip

* Manuscript received by the PGMTr, May 19, 1958.
I Canadian General Electric Co. Ltd,, Toronto, Can.
1 S. A. Schelkunoff, “Electromagnetic Wa~es, ” I). Van Sostraud

Co., Inc., New York, N. Y., ch. 8-9; 1951.
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per unit length; but it might also be used to sol~c re-

lated problems in v-hich the potential equation defines

other physical quantities, like magnetic flux, fluid flow,

or heat flux.

In order to obtain C, approximation methods, based

ou estimates for the “fringe” capacity were first intro-

duced.z 3 Later a number of workers used conformal

maPPing,4–13 but only few cases, usually assuming in-

finitely thin conductors, can be calculated in closed

form; even they- lead to rather complicated expressions

in elliptic functions. Otherwise approximations must be

made to obtain usable results.
~~le Ilote that the main effort of the col~formal method

is directed toward solving the Laplace equation point

by point, or in other words, to describe the electro-

magnetic field in every point of the cross section. This

field is usually of no interest by itself, but a close ap-

proximation of the field seems necessary to obtain a

close value for C.

l’ariational methodsl~ are known to be numerically

useful for just such a type of problem and very recently
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they have been applied to certain TEM structures, as

for instance trough Iines.lb-ls They permit a good esti-

mate even if a relatively crude trial function is sub-

stituted into a “stationary integral. ” However, varia-

tional methods have two disadvantages. Good trial

functions must permit easy numerical work, they should

contain a large number of parameters which can be

chosen arbitrarily, and they should cover a fairly gen-

eral case. Such functions are not always easily found.

Also, the calculated approximation is actually an upper

bound for the stationary integral, but little advantage

is obtained from this fact as long as no lower bound is

known.

In th:w paper it is intended to derive two stationary in-

tegrals, which give both an upper and a lower bound for

the characteristic impedance Z. Both integrals permit

relatively easy numerical evaluation when trial func-

tions obtained by a process similar to relaxation are

used.

We shall consider the region R of the complex plane

which is bounded by curves G and H, corresponding to

the cross sections of ground plate and ‘(hot” conductor,

and by the two sides of cuts Fi which are introduced with

the purpose of making the region R of the complex

plane simply connected. This is illustrated in Fig. 1.

y//////////////, /, ///, /,1/,. / / ./

! G
1

“‘“\b b R\
‘. “;2 .------F;~--- - G

[:/ ,/’ -,. / .’//’,’/ //’ ,’ . “/,,, ,,’/’ / ‘ .’

Fig. l—Strip cross section, showing construction oi
the simply connected region R,

In this region R we shall define a potential function @

and a stream function ~ as follows:

The potential function @ is defined by:

$= Oon G (3a)

@=lon H (3b)

@and ~ are continuous across the cuts F (3C)

Aq$=Oin R. (4)

Because of (3a)–(3c) the expression @(&b/dn) will be

equal to the integrand on H, disappear on G, and cancel

on both sides of F. Consequently, we may express C by

15R. M. Chisholm, ‘(The characteristic impedance of trough and
slab lines, ” IRE TRANS. ON MICROWAVE THEORY .4ND TECHNIQUIH,
vol. MTT-4, pp. 166–172 ; July, 1956.

K R. E Collin ‘(The characteristic impedance of a slotted coaxial

line, ” IRE” TRAN& ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-4, pp. 4-8; January, 1956.

17 N. T’omcio, “The Characteristic Impedance of a Transmission
Line Consisting of a Ribbon in a Rectangular Trough, ” University
of Toronto, Toronto, Ont. Can., Dept. of Elec. Eng. Res. Rep.; 1954.

18J. D. Horgan, ‘(Coupled strip transmission lines with rectangu-
lar inner conductors, ” IRE TRATW. ON MICROWAVE THEORY AND
‘techniques, vol. MTT-5, pp. 92-99; April, 1957.
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The subscript F, G, H, indicates that the integration

extends along the whole contour of th,e simply con-

nected region R. On (5) we may apply the Gauss Theo-

rem, and using (4) we obtain

c
— —-J’s (V@)2dA (6)
c R

with the notation

(because this is a two-dimensional problem) and:

dA = dxdy.

The stream function ~ is defined as the conjugate func-

tion to (e/C)~, or in other words by the Cauchy -

Riemann equations:

d+ c i?+

%=;%
(7a)

8+ c a+

ay=–; ax
(7b)

from which it follows immediately that ~ too is a solu-

tion of the Laplace equation:

A#=O (8)

and

(c/e) ’(v+)’ = (’f#))’. (9)

# is uniquely determined except for an additive con-

stant, which may be chosen arbitrarily.

The boundary conditions for ~ follow from those for

4, (3a) -(3c)

qb
on Gand H: F-=O (Ioa)

8+
on Fi: continuous. (lOb)

G

Across Fi the function ~ will be discontinuous. (The

cuts Fi have been introduced for this purpose: other-

wise # could not be uniquely de fined.) However, the

“jump” of ~ will have a constant value along the cut

Fi. We shall denote this constant by writing .Fi as index

to the function $:

along Fi: +/12 = $F; = constant. (Ioc)

We consider now only those cuts Fh wjhich lead from

G to 1<, For these cuts we shall calculate the expression

z~Fh as follows: If we integrate along a closed curve

around H:

4

a+
— ds

If (3s
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this integral does not disappear, because

continuities +Fi. However,

Substituting irom (7) and (2) we see

c d+ E@
——— .—

e as dn
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of the dis-

(11)

(Provided that consistent sign conventions are used,

e.g., counterclock integration, crossing Fk from 1 to 2,

normal direction pointing outside from conductor.)

Usually there will be only one hot conductor, and one

cut F, and the sum ~i~~ = 1 will have only one term.

However, (13) will be derived to cover also the case of

several conductors, which of course may be used to

support a number of TEM modes. Some such struc-

tures have been recently described .18–20

Finally we express C/e by ~, substituting (9) into (6):

c 1
— (13)
e

JY
(V~)2dA

R

While (13) as well as (6) seems to be unnecessarily

more complicated than (2) we note as previously shown14

that both area integrals are stationary. Consequently,

even crude approximations of q5 and $ will give close

upper bounds for the area integrals, and with it upper

and lower bounds for Z. The approximations have to

fulfill the same boundary conditions as @ and ~ and

they must be continuous; they need not be solutions of

the Laplace equations. We may formulate:

a)

b)

If a function U is continuous and if it takes the

values U= 1 along the hot conductor(s) and U= O

along ground, then U may be used as trial function

to calculate an upper bound for C by

c<
— — Sf (VU)2dA.— (14)
e R

The equal sign holds only if AU= O.

If a function Vis continuous in a simply connected

region & which is obtained by arbitrary cuts Fi

from the part of the complex plane which is

bounded by the conductor and ground plate cross

section, and if the jump in V across any cut F~ is,

for this particular cut, a constant V~,, and if the

sum

19S. B. Cohn, “Shielded coupled-strip-transmission lin;, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MT r-3, pp.
29–38; October, 1955.

“ E. M. T. Jones and J. T. Bolljahn, “Coup led-strip-transmis-
sion-line filters and directional couplers, ” IRE TRANS. ON MICRO-
WAVE THFORY .IND TECHNIQUES, vol MTT-4, pp. 75–81 ; .April,
1956.

h

(the summation extending over all cuts Ieading

from ground to a hot conductor), then V may be

used as trial function to calculate

for C b>-

C 1
— >—
e—

Ss(VV)2dA
R

a lower bound

(15)

The equal sign holds only if A V= O.

Physically the integrals (6) and (13) are twice the

electrostatic energy (~ C U2) for unit potential drop, and

twice the electromagnetic energy (&L12) for unit current

in the conductor(s); both are expressed by the energy

density of the respective fields. The stationary char-

acter of the integrals may be explained by noting that

any approximation of the field introduces additional

space charges or currents which can only increase the

total energy.

The lower bound is then obtained from L by elimi-

nating Z from
—

(1)

However, because of the importance of the relations

(14) and (15) they will be derived separately in Ap-

pendix II; this will also give a better understanding of

the restrictions in the choice of U and V.

The bounds obtained by the integrals are remarkably

close if we construct suitable trial functions. This will

be done now for U; the construction of V is completely

analogous. As (14) and (15) can be used to check the

accuracy of the result, we may feel free to choose the

trial functions not so much for close approximation of

the field but for numerical convenience:

a)

b)

c)

We chose a Cartesian grid of square mesh with

N meshes of side length k which is conveniently

located with regard to boundaries and symmetry

lines.

Within each square k of the grid, we define a differ-

ent trial function tTk(x, y) as the bilinear expres-

sion:

~T~(~, y) = &.Zy + &2* + &3y + Bw.

Uk is a potentiai function with four available

parameters Bk, which shall be chosen in such a

way that 11~ interpolates linearly between the (ar-

bitrarily chosen) values of U at the grid cor-

ners, which we shall name ‘(grid values. ” Then the

functions Uk will join continuously across the grid

lines.

The function U, which is constructed to be equal

to each Uk in its square, is then a continuous func-

tion and suitable as trial function.
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This trial function contains the arbitrarily chosen grid

values as independent parameters which shall be chosen

later so that a minimum condition will be fulfilled.

Therefore, it is logical to express by these grid values the

contribution of the kth square to the stationary integral.

Substituting gives at first an expression in 3],;

of a Strip Transmission Line

34 3

‘BE

FWE6 AREA
%(./ ~K

UK.,,, lLu-$2=uK,/ UM,2

443

H (VU)2dA = ~ H
Fig. 2—Each value UH is the average of eight surrounding ~.alues.

(V U,) ‘dxdy
R k=l Rh

ers21–z3 except that conventional relaxatic, n is basecl 0]1

JY
(V Uh)’dxdy

the average of only four neighboring values and is of

[<~ little known accuracy. .41s0, because our integrals can-

+h/2

-J s
+}’/2 cel the first-order error, the relaxation must be carried

— [(Bk,y + BM)2 + (BAI.V + _BJ2jdyd.v out only to one or two digits accuracy for our case, so

.-h,l’ –h)’2 that there is less numerical work than in a conventional

[

l’32Bk12

1
relaxation.

= 12’ -— ~ + Bk,2 + Bh~2 (16)
CONCLUSION

but we wanted to express the integrals in terms of the
In conclusion we may describe the numerical method

grid values U~l, etc. as follows:

After further substituting and rearranging, the final 1) hlake a low accuracy relaxation plot for unity po -

equation may be written in two forms: tential drop.

JJ
(ViY)2dA = ~ [~(u, – U,+ U,, – U,)’+ +(UI – Us)’+ ~(U, – UJ2] (17)

= z~[(u, - U,)’+ (U, - U,)z + (Us - u,)’+ (U, - U,)z + 2(U, - u,)’+ 2(U2 - u,)’]. (18)

Eq. (17j is useful for numerical evaluation as shown in

Appendix I. However, (18) is helpful in understanding

the additional restrictions we can impose on the grid

values so that the integral becomes a minimum.

It is c)f course desirable to use such grid values that

the integral (14) has the lowest possible value. As this

integral in any case must be larger than C, the lowest

integral gives also the lowest error. In (18) the terms in

the brackets contain twice the squares of the changes

of U a.lcmg the diagonals, but only once the square of

the change along the side of the mesh. However, the

same amount again is contributed by the side of the

next mesh square, as shown in Fig. 2.

Consequently each grid value Ukl contributes with

equal weight the squares of the eight differences be-

tween U~l and its eight neighboring grid values, to the

quadratic terms of the sum (18). The minimum of these

8 terms is obtained when the grid value UM is the arith-

metic mean of its 8 surrounding grid values. This gives

one linear equation. Similar equations are desirable for

all other grid values. This results in a system of linear

equations which has only the one solution correspond-

ing to the lowest value which the upper bound for C

can take if any function defined for the given grid is

used as trial function.

If the number of grid values is large, these equations

may be solved by the relaxation methods introduced

and described in detail by Southwell and his coworl<-

2) Repeat the plot, but for unity potential discon-

tinuity.

3) Square the differences (U, – U,+ U3 – U4), etc.,

and summate for both plots according to (17).

The normalized impedance must then lie between

the inverse of the sum of the first plot and the sum

of the second plot.

APPENDIX I

EX.4MPLE

Suppose we have the symmetrical strip of the cross
section, Fig. 3, and we want its impedance for the odd

mode. Because of conventional symmetry considera-

tions and the availability of a solution for lone strip (due

to Bates4) shown in Fig. 4, we have to solve numerically

only for twice the piece of cross section which is shown

enlarged in Fig. 5, covered by a grid of ten meshes and

bounded by equipotential and symmetry lines. The

field and the characteristic impedance for the cross

section, as shown in Figs. 5–7, will be evaluated numeri-

cally. This is intended as an example, illustrating the

21 ~. R. Hartree, “Numerical .Analysis, ” Clarendon Press, Oxford,
Eug., ch. 10; 1952.

n R. V. South lvell, ‘<Relaxation Methods in Thec)retical Physic s,”

Oxford Uni~ersity Press, Oxford, Eng.; 1946.
23E. lbl. Grad, “Solution of electrical engineering problems b~

Southwell’s relaxation method,” Tm}zs. .41EE, w]. 71, pt.1,pp.
205–214; July, 1952.
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I I ,

Fig. 3—Double conductor strip.

---+---

.—

*

—.

Fig. 4—Strip solved by Bates.4

numerical work required. Fig. 6 shows

Fig. 5—Detail of Fig. 3, showing numbered mesh.

o

7+—5—4—2—

w

10
1

-–5–-

Fig. 6—Relaxation sol~tion for the “grid values” of Fig. 5. Each
grid value is approximately the average of the eight neighboring
grid values,

a very rougn

approximation of the potential at the corners of the

grid, which we call “grid values. ” Each “grid value” is
,_.& —11-—lf-—lp

obtained from the condition that it must be approxi-

mately the average of its eight neighboring grid values;

approximately means accurate within one or two digits.

With some practice the grid values may be just written

down without further calculation.

Fig. 7 shows a similar plot, except that equipotential

and symmetry lines are interchanged. Decimal points

are omitted in both plots. Their proper location is given

by the requirement that Fig. 6 shows a field with unity

potential drop, and Fig. 7, a field with unity sum of

potential discontinuities. For each mesh, we calculate

the following expressions in its 4 grid values U:

(u, – u, -t u, – u,)’, (UL–LT,)’,(U,–U,)’
and add these terms for all iV mesh squares, according

to (17) as tabulated and evaluated in Table 1.

As our approximation is still very crude, we consider

it to fit a similar plot evaluating the left half of Fig. 4.

This plot need not be worked out because we obtain its

results from the Bates solution4 which, in this particular

case, gives Z~ = 51.5 ohms. The (with 377 ohm) normal-

ized values for the impedance and admittance of the

left half may be added to the values of our plot as if

we had obtained them by continuing our plot into the

Bates region.

The results of the numerical calculation are two

values, one larger than 377/2, the other larger than

2/377 (the normalized impedance of the strip). This

can be rewritten as Z =48.6 ohms with an accuracy just

shown to be better than + 2 per cent. A more refined

plot with 40 meshes and 2 digit accuracy has been

worked out and gave Z =48.5 ohms + 0.8 per cent. This

illustrates that it is not difficult to get good results.

APPENDIX II

1
Ill!

O —6—1,1—15—16

II 1!
-–6-—l~—l9—2O

I

25

Fig, 7—Relaxation solution for the grid values of Fig. 5 after
interchanging equipotential and symmetry lines.

The boundary conditions for the error @’ are:

~’=Oon G

4’=Oon H

O’ and ~ continuous across F.

We note that the last condition is not very stringent,

as the location of the cuts Fis arbitrary, Consequently,

and, using again Gauss’ theorem and (4) this becomes

If V~V4’dA = O

for any ~’ which only fulfills the boundary conditions

and is continuous and of limited variation so that the

Gauss theorem can be used. Expanding the expression

on the right side of (14), we get

u (VU)2dA
R

For proof of (14) write U as sum of the correct SOIU- =

tion ~ and an error q5’, If (V@)2dA+2SsV~V@’dA + If (V+’) ‘dA,
R R R
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TABLE I

N crvsmuc~L Ev4.LuATIo~ 01: Z

:U, –U, +U3– U4)2 (U, –U,)2

16 I 64

3)32 I 272
I

11
272
140

423
4.23
3.66 +

377
—. >
7.89 z

(u, – u,)’

25
16
4
0

25
25

:
25
16

140

(v– V2+V3– v,)’

o
0

;

1:
0

1:
1

..—

3)34

2;:
423

63S

—

.

—

(v, – v,)’

36
2s

9
0

36
25

0

3:
25

201

(V2– V,)2 1Square terms of fiual equation

36
25
16

4
36
81
64
2.5

100 I

36

423 Sum up:—

0.0635 . _. —-——- —Restore decimal point
— -—Add known solution

0. 0683+.-– -–l Z mai ning half of field
—— >
0.1318 377 1

4&.377 Q

for re

The 2 inequalities give: Z = 48.6 Q ~ 2 per cent
A more refined plot with half the mesh size and 2 digit accuracy gives: Z =48.5 !1 + 0.8 per cent

and substituting (6) gives

:l,%’’=l,%

Ss(VU)’LL4 = ~+ H(V@’)2dA (19, This integral can have only two values:
R e [t

from which (14) follows immediately. Regarding ac-
= O if F; connects two boundaries of equal potential, or

curacy, (19) shows also how the error iu C depends on = 1 if Fi connects from a G boundary to an H boundary

the error of the approximation Uofthe potential func-

tion ~. Finally we may drop the requirements for
Only the latter ones are crossed by the contour aro uncl

limited variation; otherwise the integrals would not
all Hconductors; therefore only these terms contribute

even be finite, much less a minimum.
to the sum, which we indicate by changing the index

from i to h:
For ~roof of (15) write 1’ as sum of the correct SO]LI-.,

tion 4 and an error *’:

in ~vhich ~F~ and ~F,’ denote the jump of V and 1’

across the cuts Fh(which are crossed when circling all

Hboundaries).

IJie now have to calculate

$ +’ : as
F GH

Because d~/&z = O on G and H (lOa.) this becomes:

Substitute from (7)

If +’ is continuous and of limited variation we can

apply the C~auss theorem and get

J’sV#V#’dA = O
R

for any function +’ which need only f ulfi 11 (20). From

this follows

fs(vv)’LiA =1~ + JJ (W’j2dA.
E R

which gives us (15) immediately.

APPENDIX III

This Appendix deals with the convergence of the

bounds when evaluated by relaxation methods.

For all practical purposes, it will be su ficient to cal-

culate the upper and lower bounds, which give directly
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the total possible errors and, if necessary, to go to

one finer plot. However, this can be repeated to any

given accuracy; in other words, it is sufficient to refine

the plot if the difference between the bound and the

correct value is to be made smaller than any given

value. This shall now be shown briefly.

The error in (19) consists of two parts: 1) Error due

to incomplete relaxation, ~) Inherent error due to size

of the grid.

The first error is essentially numerical and shall not

be of concern here. It is assumed that a sufficiently ac-

curate relaxation is available. For the second error,

however, we will assume that we know the exact solu-

tion @ and we will take arbitrarily the values of the

exact solution as grid values UMetc., and get

With (19) this error becomes

Ss(V~’)2dA .

But on the grid corners ~~’ = O; and because @ is con-

tinuous and differentiable the integral, and with it the

error for this arbitrarily chosen plot, will disappear in

the limit if the grid is made sufficiently fine.

Of course the plot for which it was just proved that

its error can be made negligible is not the plot obtained

by relaxation. However, it is a pleasant feature of the

variational method as compared to conventional relaxa-

tion that this does not really matter because the error

due to the completely relaxed plot must be still smaller

than the error from any other plot. This completes the

proof.

Ferrite Line Width Measurements in a

Cross~Guide Coupler*
DONALD C.

Sununarg-Theoretical and experimental results are presented
to show that the line width and the g factor of a spherical ferrite sam-
ple can be measured in a cross-guide coupler. The method is much

easier to instrument than the usual cavity method and the measure-

ments are much easier to perform. Experimental verification with a
cavity perturbation system indicates that the measured quantities

are sulliciently accurate for most purposes.

INTRODUCTION

ECENT work by the author with ferrite direc-

R
tional couplers indicated that such devicesl might

be useful in measuring the line width and the

g factor of ferrites. Earlier unpublished work by the

author in this field showed that such devices were not

practical for measuring the components of the suscepti-

bility tensor of a ferrite sphere because of the extreme

sensitivity that was required in the detecting system.

However, the measurement of the line width and the

g factor depends upon relative power measurements.

Thus, it was felt that the couplers offered considerable

promise of yielding accurate data with a minimum of

effort. A second method was also desirable in order to

verify data on line widths and g factors obtained with a

cavity-perturbation system. It was not intended that

the new method be highly accurate, but rather that

* Manuscript received by the PGMTT, May 27, 1958; revised
manuscript received,, July 11, 1958.

j’ Lockheed Missde Systems Div.l Sunnyvale, Calif.
1 D. C. Stinson, “Ferrite directional couplers with off-center

apertures,” IRE TRANS. ON MICROWAVE THEORY .L~~ TECH~IQUESj
VOI. MTT-6, pp. 332–333 ; July, 1958.
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it be simple and capable of yielding reliable comparative

data during the development of optimum manufactur-

ing techniques.

The method chosen is extremely simple and uses a

cross-guide directional coupler with a round, centered

hole in the common broad wall. The wall thickness at

the coupling aperture is about half the normal wave-

guide wall thickness and the hole is of such a diameter

that the coupling is 40–50 db. For the X-band test

coupler presently used, the hole diameter is ~ inch and

the wall thickness at the hole is 0.020 inch. The X-band

test coupler is illustrated in Fig. 1. The two waveguides

are soldered together and an access hole is provided for

inserting the sample into the coupling hole. The fit of the

cover plate on the access hole is not critical since any

leakage of power through it is unimportant in relative

power measurements of this type as long as the leakage

power remains constant while the measurements are

being taken. The ferrite sample is glued symmetrically i n

the coupling hole with Duco Cement, which had no

noticeable effect on the measurements. However, the

placement of the sample in the coupling hole had some

effect on the level of the coupled power but no notice-

able effect on the line width or the g factor.

The usual method for measuring the microwave

susceptibility and the effective g factor of a ferrite de-

pends upon the complex frequency perturbation of a

resonant cavity. The method is quite popular but fairly

difficult to instrument. It also has other disadvantages:


